
CS 24: Introduction to Computing Systems
The Memory Hierarchy
Data stored in memory need to somehow get to the CPU, but how does this happen? Today, we will discuss
the way modern computer systems make accessing memory as fast as possible given constraints on hardware
and price.

Memory
Most memory on your computer is Random Access Memory (or RAM) which can be written to and read
from many times. There are two types of RAM: Dynamic RAM (DRAM) and Static RAM (SRAM). SRAM is
significantly faster than DRAM, but it is also much more expensive. In an ideal world, every computer would
have a big pool of SRAM and not need DRAM (or disk!), but this is not how it actually works. In practice,
computers have a small amount of SRAM, a larger amount of DRAM, and a huge amount of disk. The big
question to answer is how to use this memory; in particular, which data should be put in the fast memory and
which in the slow?

Caching
A cache is a small lookup-table that stores results that have already been computed or looked up; they are used
to speed up future requests for the same result. You’ve already seen several examples of caches in previous
courses as well as your daily life:

• Memoization. In CS 2, you saw how storing a hash table of results (i.e., a cache) could speed up an
algorithm from exponential to polynomial runtime.

• Loading Websites. When you reload a website, it usually appears much faster the second time. This is
because your web browser is caching the images and scripts loaded by the webpage on your local machine.

• Compilation. When you make your projects, only the files that changed are re-compiled. The disk is
used as a cache for the binaries you’re creating.

Perhaps unsurprisingly, in addition to the software cache examples above, computers use hardware caches as
well. In particular, rather than divvying up who gets fast memory and who gets slow memory, computer systems
utilize the fast memory as a cache for the slow memory. In other words, when data is fetched by a program,
it makes its way from the slow memory to the fast memory to the registers. The same data is stored multiple
times at different levels of this hierarchy.

None of this would be necessary if the latencies of SRAM and DRAM weren’t significantly different; so, it can
be educational to get a sense of just how big the difference is. To do this, we need a reliable way of measuring
performance.

Performance Via Clock Cycles
A clock cycle is a single “tick” of the processor. It’s the smallest unit of time in which something can occur, and
usually a small number of instructions can be run in one clock cycle. We can use the clock rate of a processor
to convert between clock cycles and time. For example, the clock rate of compute-cpu2 is 1995 MHz which
means one cycle takes approximately 0.5 ns.

Timing Reads and Flushing the Cache
To determine tnhe difference between using the cache and not using the cache, we use two primitive which
are built on assembly instructions provided by Intel. First, we can time how many clocks a single read takes,
and second we can flush a particular address from the cache. This functionality is provided in util.c by the
functions time_read and flush_cache_line, respectively.
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An Experiment
Finally, we have all we need to do an experiment between using the cache and only using main memory. Consider
the following code snippet:

1 const uint64_t N = 1000000;
2
3 int main(int argc, char *argv[]) {
4 char *array = malloc(N * sizeof(char));
5 uint64_t result = 0;
6 for (int i = 0; i < N; i++) {
7 result += time_read(&array[i]);
8 flush_cache_line(&array[i]);
9 }

10 printf("%llu\n", result);
11 }

Running this on compute-cpu with and without the flush_cache_line line of code gives us tthe following
(averaged over a few runs):

• With the cache: 66469872 clocks ≈ 0.03 seconds

• Without the cache: 343293488 clocks ≈ 0.17 seconds

Given that the array size is relatively small, this is a very significant difference, and it only gets worse as the
array size increases.

Memory Hierarchy
In practice, there is not one cache, but three caches. The “memory hierarchy” looks like the following:
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The goal of the memory hierarchy is to provide the amount of memory at the right side at the speed of the
left side. This may initially seem unlikely to actually happen, but, in fact, most programs are closer to the left
than the right in speed! This is possible because most memory accesses in programs exhibit a property called
locality.
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Locality
The main idea is that if a program makes a memory access, it is likely that it will (1) access memory nearby
soon, and (2) access that same memory location again soon. These two ideas are called spatial locality and
temporal locality. Consider the following two functions:

1 uint64_t pseudorandom_access_pattern(int *array) {
2 uint64_t result = 0;
3 for (size_t i = 0; i < NUM_ELEMENTS; i++) {
4 result += time_read(&array[rand() % NUM_ELEMENTS]);
5 }
6 return result;
7 }
8
9 uint64_t inorder_access_pattern(int *array) {

10 uint64_t result = 0;
11 for (size_t i = 0; i < NUM_ELEMENTS; i++) {
12 result += time_read(&array[i]);
13 }
14 return result;
15 }

The first function accesses elements of the array in a random order, and the second accesses them sequentially.
In both functions, result has temporal locality, because it is accessed every iteration of the loop, but the second
function has far more spatial locality than the first. Notably, the only difference between these two functions is
the order of elements accessed. When these two functions are run, the in-order one consistently takes at least
20,000 fewer clocks than the random one.
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