
CS 24: Introduction to Computing Systems Fall 2020
Extra Credit 01: GC (due Monday, November 16 @ 11:30pm)
In this extra credit, you will write two algorithms to support garbage collection in a Python-like
interpreter. This project will be graded all-or-nothing based on the gitlab tests. Full credit will
add +3% to your final grade. All extra credit is applied after the cutoffs are already set.

So far, we have seen how Java is run, compiled a small version of BASIC to machine code, and im-
plemented a memory allocator for a low-level language. This time, we continue our exploration of
systems-level programming by writing several garbage collection algorithms for a Python-like language
called subpython.

subpython Interpreter
We have provided you with an interpreter capable of evaluating Python-like expressions in a Read-Eval-
Print Loop (REPL). You can build it with the provided Makefile, and then give it a try:
compute-cpu2>./subpython
Subpython [CS24 Fall 2019]
Using a memory size of 1024 bytes.
>>> 2 + 3
5
>>> "hello"
"hello"
>>> a = 5
>>> b = 9
>>> a + b
14
>>> lst = [1, "goodbye", 3]
>>> lst[1]
"goodbye"
>>>

This interpreter is only Python-like. It has a syntax similar to Python, but it only supports very limited
functionality:

• Supported data types are integers, strings, lists and dictionaries along with the values None, True
and False.

• Basic comparisons and arithmetic are supported.

• The only available control-flow structures are if and while statements.

• Global variables are supported, and can be assigned to multiple times.

• Global variables, list elements and dictionary entries can be deleted with the del command, e.g.
“del a”.

• Dictionary keys may only be None, True, False, integers, or strings.

• Both list elements and dictionary entries may be the target of an assignment. New dictionary entries
may be created by assigning to a key that is not in the dictionary. Existing ones may be updated
using a similar mechanism.

• Lists cannot be extended.

This is sufficient to generate very interesting graphs of values within the interpreter. For example, you
can do fun things like this:
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>>> lst = [1, "b", 3]
>>> lst[2] = lst
>>> lst
[1, "b", [1, "b", [1, "b", [1, "b", [..., ..., ...]]]]]

Finally, the interpreter provides these functions:

• quit() exits the interpreter. (You can also exit the interpreter with Ctrl-D, etc.)

• mem() prints the number of used bytes of memory

• gc() manually invokes the garbage collector.

• len(v) returns the length of a list, string or dictionary

• print(v,...) will print the passed in value(s)

Caution: Lots of Code!
In most previous projects, the code we have written has been either isolated from the code you’re imple-
menting or small enough that you could understand all of it. For this project, neither of these is true,
and it is an intentional, learning-related decision.

The subpython Allocator
When the subpython interpreter starts, it allocates a chunk of memory called the “memory pool” which
can be used throughout the program. To manage the memory pool, the interpreter uses an explicit list
allocator similar to what you probably implemented last week. If the pool runs out of memory, subpython
reports an out-of-memory error.

Initially, allocations are placed sequentially at the start of the pool. When an allocated value becomes free,
it is added to a singly-linked explicit free list. There is a special value_t type VAL_FREE for values in the
free list. Later allocations are served from the free list using a best-fit approach. The allocator performs
splitting, but not coalescing, since the garbage collector (which you will implement later) coalesces free
space automatically.

As discussed in lecture, we can use references instead of pointers to allow us to eventually move the
contents of memory around and compact the pool. Just by introducing this one level of indirection, the
allocator can implement some very sophisticated functionality.

In our system, a “reference” is simply an index into the ref_table maintained by the allocator (in
refs.c); this table records the actual address of each value. Global variables (managed in eval.c) store
a reference_t to the value associated with the name. Lists and dictionaries use reference_ts to record
the keys and values they hold. If code needs to look up the actual value from a reference, it must use
the deref(reference_t) function provided by refs.c to get back a pointer to the value_t.

(Note that -1 is a special value for references; it is a “null” reference that doesn’t refer to anything. The
file types.h defines a symbol NULL_REF that should be used within the code.)

This allows the allocator to change the actual address of values without breaking any other part of the
program. As long as the ref_table entries are updated properly, a value_t can be moved within the
memory pool without any problem.

You can make subpython print out the current state of its memory pool by giving it the -d argument.
If you do this and feed in the above statements, you will see exactly the above results. Additionally, you
can specify a different pool size with the argument -m size.
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global_vars

“a” : ref 5

None : ref 0
True : ref 1
False : ref 2

memref_table
0
1
2
3
4
5
6

value_t
ref_cnt = 1
size = 24
value_t
ref_cnt = 1
size = 24
value_t
ref_cnt = 1
size = 24

integer_value_t
ref_cnt = 1
size = 32
integer_value = 35

ref_array_value_t
ref_cnt = 1
size = 40
values = [6]

list_value_t
ref_cnt = 1
size = 40
values = 4

string_value_t
ref_cnt = 1
size = 40
string_value = “str”

(free)

To help you understand how everything works together, here is a diagram
of what the allocator will have in memory after running the following
two commands:
>>> 35
35
>>> a = ["str"]

Task 0: The value_t Structs
All values in the interpreter are represented by versions of the value_t
struct (in types.h). You will notice that value_t has several “sub-
types,” integer_value_t, string_value_t, list_value_t, dict_value_t,
ref_array_value_t, and free_value_t. These types use the standard C ap-
proach of having the same leading members; this allows a value_t* to be cast
to the appropriate sub-type (see the type member in the base field), so that the
specific members can be accessed.
In order to familiarize yourself with these types, answer the following questions in
the answers.md file in your repository.

Task 1: Reference Counting
In its present form, the interpreter will eventually run out of memory because no garbage collector is
implemented.

Notably, the ref_count variables look. . . wrong. This is because you have to implement the incref
and decref functions which get called by the subpython evaluator every time a reference is added or
removed, respectively.

Your task is to implement these reference counting functions so values that no longer have any references
are reclaimed by the memory allocator. Each value_t (stored in the memory pool) has a ref_count
member that should be increased or decreased accordingly. If the ref_count is 0, then no other value
refers to this one; so, it is definitely garbage and should be collected.

Garbage values must to be marked as free and added to the free list using the mm_free function. The
corresponding entry in the ref_table also needs to be set to NULL so the reference can be reused. When
a value becomes garbage, it decrements the reference count of each value it is referencing as well. For
example, in the following subpython code, del x causes both the list and the 1 to be freed:

1 x = [1] # reference graph: x −> VAL_LIST −> VAL_REF_ARRAY −> 1
2 del x # VAL_LIST becomes garbage, which makes
3 # VAL_REF_ARRAY garbage, which makes 1 garbage

Q0: Implement reference counting in the file refs.c, between the “//// REFERENCE COUNTING
////” comment and the “//// END REFERENCE COUNTING ////” comment. Once you’ve fin-
ished, make test1 should run successfully.

Task 2: Fixing Dictionaries
The subpython evaluator already makes calls to incref and decref in most of the places where a
reference to a value is added or removed. However, these calls are missing in the implementations of dict
operations. Your task is to add all the necessary incref and decref calls to the following functions in
eval_dict.c:

• dict_bool: called to convert a dict to a bool (e.g. in not not {1: 2})

• dict_len: called to get the size of a dict (e.g. in len({1: 2, 3: 4}))
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• dict_subscr_get: called to get the value corresponding to a key (e.g. in d = {1: 2}; d[1])

• dict_subscr_set: called to set the value corresponding to a key (e.g. in d = {1: 2}; d[1] = 3)

• dict_subscr_del: called to delete a mapping from a dict (e.g. in d = {1: 2}; del d[1])

Some of these functions may not need to change reference counts. The corresponding functions for lists
(in eval_list.c) should serve as a guide for where the reference counting calls are needed.

Q1: Fix reference counting in the file eval_dict.c by adding calls to incref and decref in
the right places. Once you’ve finished, make test2 should run successfully.

Task 3: Stop and Copy
Now that you’ve implemented reference counting, you should have a sense for why subpython (and real
Python) use it as their default mechanism for identifying garbage. It frees garbage as soon as possible
and it is very fast because it only checks if a value has become garbage when its reference count is
decremented. However, it can’t recognize cycles of garbage values referencing each other. To solve this
problem, both subpython and Python rely on periodic garbage collection to collect cycles of garbage.
Your task is to implement the stop-and-copy algorithm for the subpython allocator. This requires splitting
the memory pool into two halves:

• The “from-space”, where allocations are performed

• The “to-space”, which is (currently) all garbage

When collect_garbage is called, it swaps the from-space with the to-space. Any non-garbage values
that were in the from-space must be moved to the to-space. Non-garbage (or "reachable") values are
defined as values that are referenced directly or indirectly by global variables.
Some implementation notes:

• Points will be deducted for using more than a constant amount of additional memory for stop-and-
copy. It is possible to implement it without using any additional memory.

• The function is_pool_address can be used to determine if an address is inside a memory pool.
It is documented in mm.c.

• The function foreach_global can be used to iterate over the global variables. It is documented
in eval.c.

• To avoid fragmentation, the copied values must be “compacted”, i.e. placed contiguously at the
start of the to-space

• The ref_table needs to be updated to point to the relocated values. As in task 1, garbage
references also need to be removed from the ref_table.

• The free list and reference counts may need to be updated

• Once you’ve finished, make should run successfully.

Q2: Implement stop-and-copy in the file refs.c, between the “//// GARBAGE COLLECTOR
////” comment and the “//// END GARBAGE COLLECTOR ////” comment. Once you’ve fin-
ished, make should run successfully.
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