
Adam Blank Fall 2020Lecture 8/9

CS
24

Introduction to Computing
Systems



CS 24: Introduction to Computing Systems

Dynamic Memory

0x
00

0x
08

0x
10

0x
18

0x
20

FFCA0110DFEBCAFE2983287323622E8EFFFFFFDDEAFACE7EE8D9A64E8C000000



Outline



The Heap 1

0xFFFFFFFFFFFF

0x000000000000

Kernel Memory

Stack

Heap

Data

Text

Reserved



What Does malloc Do? 2

An allocator maintains heap as collection of variable sized blocks, which
are either allocated or free.

void *malloc(size_t size): On success, returns a pointer to a
memory block of at least size bytes aligned to a 16-byte boundary
(on x86-64). If size == 0, returns NULL. On failure, returns NULL.

void free(void *p): Returns the block pointed at by p to pool of
available memory. p must come from a previous call to malloc,
calloc, or realloc.

calloc: Version of malloc that initializes allocated block to zero.
realloc: Changes the size of a previously allocated block.



Getting Memory from the OS: sbrk 3

NAME
sbrk -- change data segment size

SYNOPSIS
#include <unistd.h>

void *sbrk(int incr);

RETURN VALUE
The sbrk function returns a pointer to the base of
the new storage if successful; otherwise -1 with
errno set to indicate why the allocation failed.



“Slide Code” 4

Warning: The code in these slides is all “slide code”. It generally is not
the quality we expect of you, because it has to fit on a slide.

The full code is provided on the website.



Allocator Requirements 5

Correctness
Can’t control number or size of allocated blocks

Must respond immediately to malloc requests

Must allocate blocks from free memory

Must align blocks so they satisfy all alignment requirements

Can manipulate and modify only free memory

Can’t move the allocated blocks once they are malloced

Performance
Throughput: How many requests can be completed per unit time?

Utilization: How much of the heap is used for program data?



Attempt 0: Bump Allocator 6

1 void *malloc(size_t size) {
2 return sbrk(size);
3 }
4
5 void free(void *ptr) {
6
7 }



Attempt 1: “Simple Implicit List” 7

1 typedef struct {
2 bool is_allocated;
3 word_t size;
4 uint8_t payload[];
5 } block_t;
6
7 static block_t *mm_heap_first = NULL;
8 static block_t *mm_heap_last = NULL;
9

10 void *malloc(size_t size) {
11 size_t asize = round_up(size + D_SIZE, D_SIZE);
12 block_t *block = find_fit(asize);
13 if (!block) {
14 block = mm_heap_last = sbrk(asize);
15 block−>size = asize;
16 }
17
18 block−>is_allocated = true;
19 return block−>payload;
20 }
21
22 void free(void *ptr) {
23 block_t *block = (block_t *)(ptr − offsetof(block_t, payload));
24 block−>is_allocated = false;
25 }



Saving Space 8

1 typedef struct {
2 bool is_allocated;
3 word_t size;
4 uint8_t payload[];
5 } block_t;

1 typedef struct {
2 word_t header;
3 uint8_t payload[];
4 } block_t;

1 static size_t get_size(block_t *block) {
2 return block−>header & ~0xF;
3 }
4
5 static void set_header(block_t *block, size_t size, bool is_alloc) {
6 block−>header = size | is_alloc;
7 }
8
9 static bool is_allocated(block_t *block) {

10 return block−>header & 0x1;
11 }



A Reminder 9

Your mental health is important.

Please spend the effort and time to take care of yourself.



Finding a Free Block 10

First fit:
Search list from beginning, choose first free block that fits:
Can take linear time in total number of blocks (allocated and free)
In practice it can cause “splinters” at beginning of list

Best fit:
Search the list, choose the best free block: fits, with fewest bytes left
over
Keeps fragments smallusually improves memory utilization
Will typically run slower than first fit
Still a greedy algorithm. No guarantee of optimality



Splitting 11



Coalescing 12

When do we coalesce?
What do we coalesce with?
How do we coalesce with the previous block?



Prologue and Epilogue 13



Explicit List 14



Segregated List 15



Summary of Trade-Offs 16

Free-List Implementation:
Implicit List
Explicit List
Segregated List
Balanced Tree

Search Strategy:
First-fit, next-fit, best-fit, etc.
Trades off lower throughput for less fragmentation

Splitting policy:
When do we go ahead and split free blocks?
How much internal fragmentation are we willing to tolerate?

Coalescing policy:
Immediate coalescing: coalesce each time free is called
Deferred coalescing: try to improve performance of free by deferring
coalescing until needed.


