
CS 24: Introduction to Computing Systems
System Calls and Processes on Linux
Last time, we discussed exceptional control flow which enables us to work with multiple processes “simultane-
ously”. This time we will look at system calls (which are a type of trap) more closely. Specifically, we will look
at the system calls that control the process life-cycle (e.g., how processes are created or killed).

System Calls
A system call is a trap (an intentional exception) that a user program can use to ask the kernel to do something.
There are a bunch of system calls that you use regularly. For example, whenever you print something to the
console or interact with a file, you’re using system calls. Higher level constructs like printf are built on top of
lower level syscalls like write.

There are generally “syscall wrappers” (i.e., C functions that call syscalls) defined by the standard library to
make using the syscalls easier, but you can always drop down to assembly to call them as well. For example,
we can invoke the write syscall in either of the following ways:

• Via a C syscall wrapper:

#include <unistd.h>
int main() {

write(STDOUT_FILENO, "Hello World", strlen("Hello World"));
}

• Via the syscall instruction:

mov $1, %rax ; use the write syscall
mov $1, %rdi ; write to stdout
mov $msg, %rsi ; use string "Hello World"
mov $12, %rdx ; write 12 characters
syscall ; make syscall

Notably, the assembly way uses the “number” of the syscall (which, in the case of write, is 1) to look up which
syscall to make. There is a giant table of these defined in the kernel.

Error Handling
Unfortunately, most system calls can fail. This means (like calls to malloc) you must check the return value
to see if it is exceptional. Most system calls return -1 on failure. Unless the system call returns void, you must
check its return value and appropriately handle the outcome.

Processes
As we saw last lecture, a process is an instance of a running program. On modern systems, processes context
switch via the kernel to give the illusion of them all running at the same time. This form of concurrency is called
process-level concurrency. This time, we wiill explore how Linux implements the process model. In particular,
we will see that there are several key syscalls at the root of give managing processes.

Spawning a New Process
When your system starts, the “init” process is automatically started by the kernel. “init” is the parent of all
other processes (on compute-cpu2 this process is called systemd). Many processes are spawned by a shell
(like bash) which is then responsible for creating and eventually “reaping” processes it spawns. As I write this,
pstree shows the following (partial) hierarchy on compute-cpu2:

1

systemd---usr/bin/python---/usr/bin/python---/usr/bin/python
| |-3*[{/usr/bin/python}]

...
|-sshd---sshd---sshd---bash---vim
| |-6*[sshd---sshd---bash]
| |-6*[sshd---sshd---sftp-server]
| |-sshd---sshd---bash---pstree

...

But how does a process start a child process? This can be done with the syscall fork which creates a new child
process that is almost identical to the parent. fork is not a normal function, though! The most important
thing to understand about fork is that it returns twice: once in the parent (with a return value of the child’s
process ID) and once in the child (with a return value of 0). This is horribly confusing; so, we’ll just jump in
with an example:

1 int main(int argc, char* argv[]) {
2 pid_t pid = fork();
3 if (pid == 0) {
4 printf("Child!\n");
5 }
6 else {
7 printf("Parent!\n");
8 }
9 }

fork printf

printf

child

parent

So, what does this code print out? Well...it depends. For this example, there are two possible outputs:

Option 1:
>> Child!
>> Parent!

Option 2:
>> Parent!
>> Child!

The key to this is what we learned last lecture: the kernel is responsible for choosing which process runs and
the currently running process might get interrupted at any time! Because of this, the scheduler (a part of the
kernel) could choose either the parent or the child to run first after the fork. This output is non-deterministic
which means if you run it multiple times you might get multiple different answers.

1 int main(int argc, char* argv[]) {
2 pid_t pid = fork();
3 if (pid == 0) {
4 printf("a\n");
5 }
6 else {
7 printf("b\n");
8 }
9

10 printf("c\n");
11 }

fork printf(b)

printf(a)

child

parent printf(c)

printf(c)

What does this code print out? It still depends! This time, there are actually many different possible outputs:

Option 1:
>> a
>> c
>> b
>> c

Option 2:
>> a
>> b
>> c
>> c

Option 3:
>> b
>> c
>> a
>> c

Option 4:
>> b
>> a
>> c
>> c

There are also a bunch of impossible orderings. For example, none of the possible outputs starts with “c”,
because both c’s are output after a printf has already occurred.

2

Reaping a Process
Sometimes, it can be useful to stop execution until a child process is finished executing. For example, in a shell,
if we fork a child, we want to wait for the result for the user before giving another prompt. The wait function
helps us accomplish exactly this. It suspends execution until one of its children terminates. This forces fewer
orderings to be possible, because it imposes further constraints on the order processes run. Consider another
example:

1 int main(int argc, char* argv[]) {
2 pid_t pid = fork();
3 if (pid == 0) {
4 printf("a\n");
5 }
6 else {
7 wait(NULL);
8 printf("b\n");
9 }

10
11 pid_t pid2 = fork();
12 if (pid2 == 0) {
13 printf("c\n");
14 }
15 else {
16 printf("d\n");
17 }
18 }

fork wait

printf(a) printf(d)

printf(c)

child

child

parent

fork

grandchild

forkprintf(b)

new child

printf(d)

printf(c)

Loading a Program
Once a new process has been forked, we need to load the program we actually want to run. This is done with
the exec family of functions which take a variety of parameters usually including the argv for the program to
load. One of the more useful places to use exec is in a shell like bash. Consider the following very simple shell
as an example:

1 int main() {
2 while (1) {
3 // Print prompt and get user input
4 printf("mysh> ");
5 fgets(cmdline, MAXLINE, stdin);
6
7 // Parse user input into argv
8 char *argv[MAXARGS];
9 parse_line(cmdline, argv);

10
11 // Spawn a child process and exec the program
12 // specified by the user
13 pid_t pid = fork();
14 if (pid == 0) {
15 execvp(argv[0], argv);
16 }
17
18 // Wait until the child program is done.
19 wait(NULL);
20 }
21 }

Notably, we are not checking error codes (and we really should be!). Also, we have not provided the implemen-
tation of parse_line which splits a string by spaces.

3

