Adam Blank Lecture 2 Fall 2021

Introduction to Computing
Systems

CS 24: Introduction to Computing Systems

Memory and Fixed-Width
Integers

mmm&mg}mmmmymmmmqmmmmm

o o
Q Q N N v
& N N N N

Outline

1 Compilation and JVM

2 Memory

3 Integers

Outline

1 Compilation and JVM

B Memory

B Integers

Compilation Process

01010101
11011011
01110111

movl %eax, -12(%rbp)
movl %esi, %eax
addq $16, %rsp

cpar *x = malloc(sizedf(char));
x = 'a';

printf("%c\n", x);
free(x);

C Program

—_

blic class Hello {
public static void main(String[] args)
System.out.println("Hello");

64 05 6

Java Virtual Machine ~ Java By
S T

Executing Java Code

Preview

lecture.pdf

Project01: Build A TeenyJVM

Overview

In this project, you will implement all the integer JVM instructions. Your

JVM will be able to run real compiled class files.

Learning Outcomes
® | can distinguish between how Java and C execute on a computer.

® | can identify the different levels of expressiveness between
assembly/bytecode and statements in a high-level programming
language.

® | can describe how code can be viewed as a type of data.

B | can write a virtual machine.

Outline

B Compilation and JVM

2 Memory

B Integers

Memory Abstraction

Memory, Addresses, and Pointers

) R |
® Memory is (essentially) a large array of bytes.

® An address is an index into that array.

® A pointer is a variable that stores an address.

—>1 char *p = malloc(sizeof(char)); -E

%; *xp = H
"3 printf("p =n". p); 1‘
~D4 printf("*p = Sp\n", *p); (‘f
5 printf("&p = %p\n", &p);)
“\, outPUT

_ N —
2 p = om0l P—= m k

>> &p = 0x04

A Picture of Memory

O0x2a 0x01

0x0 Ox1 O0x2 0x3 0x4 O0x5 O0x6 0x7

Memory Abstraction

(@- Y malloc(sizeof (char));

23 P=matloc(sizeof(char));

wp = 42; Ot A= AP

@ printf("p = %p\n", p);
5 printf("xp = %p\n", *p);
6 printf('@'p = %p\n", *xp);
7 printf("&p_= %p\n", &p);
8 printf(['&*p|= %p\n", &*p);
9 printf({'*&p |= %p\n", *&p);
OUTPUT
>> p = 0x0a
>> xp = 0x04
>> *xxp = Ox2a
>> &p = 0x09
>> &*p = 0x0a
>> *gp = 0x0a
A Picture of Memory * \

e

0x0 Ox1 O0x2 0x3 0x4 O0x5 0x6 O0x7 0x8 0x9 OxA OxB 0xC 0xD OxE OxF

Address Spaces

O =1 byte

3-bit Address Space 4-bit Address Space

ITTTTT1T] OO IIIIIIIIIIII11
N Q

o
N
N\

N
N
NY

000
s
© N

O
S
3

3-bit Address Space T
4-bit Address Space crrrrrrrTrTITID

5-bit Address Space

6-bit Address Space
T-bit Address Space

8bit Address Space.

Address Spaces

Poll
How many bits are necessary to represent an address in a tiny computer
with only 8 addressable bytes?

A3

[b 3
[c ¢S
E 64
| 7’77

64-bit Address Space

The word size of a machine is the size of its registers and addresses.

labradoodle (and most other machines) have a 64-bit word size. This
gives us 18 EB (exabytes) of addressable memory.

s &
o o
O
& ¢

¥

To reference a word, we use the address of the first byte. Thus, to
move to the next word, we add eight (64-bit register = 8 bytes).

Reading/Storing Multiple Bytes: Endianness

So, how are the bytes within a multi-byte word ordered in memory?
OUTPUT

>> x = Oxalb2c3d4
>> &x = 0x100

\a\\ b | CS

L) | Q)

Reading/Storing Multiple Bytes: Endianness

So, how are the bytes within a multi-byte word ordered in memory?

OUTPUT
>> x = Oxalb2c3d4
>> &x = 0x100
Big Endian (Internet, JVM) Little Endian (x86, ARM (mt05))

Most Significant Byte First Least Significant Byte First

Oxal 0xb2 0xc3 0xd4 0xd4 0xc3 0xb2|0xal

0x100 0x101 0x102 0x103 0x100 0x101 0x102 0x103

Memory and Endianness 10

q;j\} Qiv AP T 4

2 *p2 = 0x1C;

mmmi@amm@mmﬁfmmmmmm@ 80000000

X

S = % ® o
Szt & & AR Y
What are the values of<*p1}nd *p2 (in decimal) on a little endian

machine?

giti6 (", %)

30) = asS

<C

Putting It All Together

11
SoTrs o Your TN CARD)
Wclare uint32_t *p; on a 64-bit little endian machine.

————

Also, suppose the following: QUTPUT

>> p = 0x01
>> *p = 0x2a
>> &p = Ox2a

Which memory locations do we know the values of and what are they?

4

OE%WM ool]
I OO
3@ = OXA
> Lyes

Outline

B Compilation and JVM

B Memory

3 Integers

Fixed-Width Representation 12

Idealized integers can be an unbounded number of bits. But, instruction
sets work over specific numbers of bytes (e.g., the word size). For
example, the uint8_t representation of 4 is 0b00000100.

w—1 .
In general, 'ijkiw.word length is w, then\(bw_1~~-bo)2 =Y b2

)

Poll
What is the largest number representable by 4 bits?

B 16 SEet xS O)‘

A 15

; NS
A 77?

but how do we represent signed

3Rt

This takes care of unsl
integers?

Two’s Complement

In general, if the word length is w, theng\
(bw—l) ;!)2 :@w]2w !

13

Two’s Complement

Poll

Which of these is the 8-bit two's complement representation of -17
A Ob11111111
[ObO1111111
0b10000000

El 0b00010000
|77

Two’s Complement

In general, if the word length is w, then

w=2)
(By-1-bo)2 = —by-12""" + (» biZ’)
i=0

14

Two’s Complement

In general, if the word length is w, then

w=2)
(by-1-"bp)2 = —bw_12w_l + (Z b,-Z’)
i=0

Poll
Which of these is the 16-bit two's complement representation of -17

A 0x1000
M| 0xFO00
OxFFFF
El OxEFFF
|77

2 —

ox> < ob))) OXOFFF
[Abo) = X

A Program in x86-64

IN mystery:

2 test %edi, %edi

3 je L2

4

5 imul %edi, %esi

6 add $Oxffffffff, %edi
7 jne L1

8

9 mov %esi, %eax

10 retq

Special Integer Values

W loks |

Base 16 Unsigned Signed
Min
Max
-1
Base 10 Unsigned Signed
Min

Max

16

Special Integer Values

Base 16 Unsigned Signed
Min 0x0000. . . 0x8000. . .
Max OxFFFF. .. Ox7FFF. ..

-1 Not representable | OxFFFF. ..
Base 10 | Unsigned | Signed
Min 0 —ow-1
Max ¥-1 [2vT-1

17

A

q\ gﬁ b <— bolgmn (.

—

AF b & ks 20

PR Vol
E

0-00 LS

QT | §© \\ <<(

SM . ob Q000)| | << |
o))) >>)

Special Integer Values

Base 16 Unsigned Signed
Min 0x0000. . . 0x8000. . .
Max OxFFFF. .. Ox7FFF. ..

-1 Not representable | OxFFFF. ..
Base 10 | Unsigned | Signed
Min 0 —ow-1
Max ¥-1 [2vT-1

17

