
CS 24: Introduction to Computing Systems
Execeptional Control Flow
The next part of the course is all about understanding how the system transfers control between different
programs. We’ll learn that the kernel of the operating system is responsible for overseeing this process.

Motivation
It can be a bit hard to see why these concepts are important at first, but we believe the following four motivating
questions (all of which we will answer using the new concepts we’ll learn this week) do a good job of explaining
why this stuff is important.

• Your computer has a lot of programs all running at once, but there are only a few CPUs. How is this
possible?

• When you access memory that your program hasn’t been cleared to use, something causes a Segmentation
Fault. What is going on there?

• Sometimes when a program is misbehaving, you kill it using control panel or kill. How does that work?

• How do fopen and fread actually access files?

So far, we’ve seen control flow within a program (e.g., jumps, call/return), but what about switching between
running programs? What about responding to the user, network, or disk? We accomplish this using exceptional
control flow (ECF). There are several types of ECF that run from very low-level to very high-level.

Exceptions
An exception is a change in control flow in response to a system event. We consider all of the below types of
ECF to be exceptions, but there are specific types which are worth getting to know individually.

• Interrupts. An interrupt occurs when an event external to the processor needs to be responded to. For
example, if the disk retrieves data for a program, it alerts the processor that the data has arrived via
an interrupt. One of the most important interrupts, as we will see later, is the hardware timer interrupt
which triggers every few milliseconds to give the kernel control of the processor.

• Faults. A fault occurs when an unintentional interruption occurs internal to the processor. For example,
if the idiv instruction tries to divide by zero, the processor needs to alert someone (who?) that an error
has occurred. You’ve likely seen the message Floating point exception (core dumped) over the
course of the projects so far–that’s exactly what’s going on there! Some faults are recoverable (e.g., the
program tries to read data that is not currently loaded), and some are unrecoverable (e.g., divide-by-zero).

• Traps. A trap occurs when the program intentionally interrupts execution to ask the kernel to do
something. The most important example of a trap is when a user process invokes a system call to
ask the kernel to provide functionality or a resource that the user process cannot execute directly. This
is how numerous functions you probably assumed were “magic” work: interacting with the file system,
starting/killing programs, etc.

A commonality across all types of exceptions is that the user program is not responsible for handling them and
they should get resolved opaquely without the program even knowing they’re happening. Someone’s code has to
handle all of these types of exceptions, and, because they often have to access system resources to be resolved,
it needs to be privileged. This privileged code is a part of the operating system called the kernel.

1



Multiprocessing
Another example of ECF, which is built on top of exceptions, is when one program suspends execution and
another begins running. Multiprocessing is necessary, because we expect all the running programs on our
computer to make progress and respond to the user; so, we can’t just run them serially. The kernel is responsible
for providing an implementation of this idea. The actual switching between running programs is called context
switching and involves saving the registers for the currently executing program and switching to the new
program’s address space.

Signals
When an exception or other important system event occurs, the kernel notifies the receiving process via a small
message called a signal. Programs usually do one of the following three things in response to signals.

• Ignore. The process can just ignore the signal and keep executing.

• Terminate. The process can immediately terminate the program.

• Catch. The process can “catch” the signal and perform a custom action as a result.
All signals have a default response (e.g., SIGSEGV (segmentation faults) generally exit the program with an
error code).

Answering the Motivating Questions
Now that we have a sense of the available types of control flow, let’s answer the questions we started with.

• Your computer has a lot of programs all running at once, but there are only a few CPUs. How is this
possible?

Periodically, the timer sends an interrupt to each processor, causing them to go from userspace
into the kernel. The kernel then chooses a new process to run, loads its state, and goes back
into userspace (now executing the new process).

• When you access memory that your program hasn’t been cleared to use, something causes a Segmentation
Fault. What is going on there?

The CPU’s page mapping hardware will fail to find the address and deliver a page fault. This
causes the CPU to transfer control to the kernel, which responds with its page fault handler.
On Linux, the kernel responds to this by delivering a SIGSEGV to the process. By default, a
SIGSEGV causes the process to terminate. The kernel reports the specific signal causing the
process to exit to its parent (e.g. bash), which might respond by printing "segmentation fault"

• Sometimes when a program is misbehaving, you kill it using control panel or kill. How does that work?

kill and similar programs can send SIGTERM to a process which generally terminates the
program.

• How do fopen and fread actually access files?

fopen and fread call the syscalls open(2) and read(2), respectively. The kernel handles
open by talking to the filesystem to find the specified file and creating a “file descriptor” that
refers to its record of the open file. When the kernel gets a “read” syscall, it looks up the
specified file descriptor and goes back to the specific filesystem code to actually retrieve the
desired number of bytes of the file from disk. The disk sends an interrupt when it is done
retrieving the data from disk.

2


