
Adam Blank Spring 2023Lecture 1

CS
24

Introduction to Computing
Systems

CS 24: Introduction to Computing Systems

Introduction:
Perspectives on

Computing Systems

Outline

1 Motivation

2 Administrivia

3 Representing Information

Outline

1 Motivation

2 Administrivia

3 Representing Information

Two Important Perspectives 1

The Programmer’s Perspective
You are a {Java, Python, C++, . . . } programmer, and you want to write
fast, safe programs that might interact with your OS.

The System Builder’s Perspective
You are a “system’s person” and you want to understand how your entire
computer works by building the pieces one by one.

Poll (M2)
Which perspective(s) do you feel are most applicable to you?

a The Programmer’s Perspective
b The System Builder’s Perspective
c Both
d Neither

Two Important Perspectives 1

The Programmer’s Perspective
You are a {Java, Python, C++, . . . } programmer, and you want to write
fast, safe programs that might interact with your OS.

The System Builder’s Perspective
You are a “system’s person” and you want to understand how your entire
computer works by building the pieces one by one.

Poll (M2)
Which perspective(s) do you feel are most applicable to you?

a The Programmer’s Perspective
b The System Builder’s Perspective
c Both
d Neither

Two Important Perspectives 1

The Programmer’s Perspective
You are a {Java, Python, C++, . . . } programmer, and you want to write
fast, safe programs that might interact with your OS.

The System Builder’s Perspective
You are a “system’s person” and you want to understand how your entire
computer works by building the pieces one by one.

Poll (M2)
Which perspective(s) do you feel are most applicable to you?

a The Programmer’s Perspective
b The System Builder’s Perspective
c Both
d Neither

CS 24 Works From Both Perspectives 2

For The Programmer
We will discuss:

important system realities that will change how you program

how to interact with the OS
how to write concurrent programs
how to write code with a security mindset

For The System Builder
You will build:

a virtual machine
a small compiler
a memory allocator
a garbage collector

CS 24 Works From Both Perspectives 2

For The Programmer
We will discuss:

important system realities that will change how you program
how to interact with the OS

how to write concurrent programs
how to write code with a security mindset

For The System Builder
You will build:

a virtual machine
a small compiler
a memory allocator
a garbage collector

CS 24 Works From Both Perspectives 2

For The Programmer
We will discuss:

important system realities that will change how you program
how to interact with the OS
how to write concurrent programs

how to write code with a security mindset

For The System Builder
You will build:

a virtual machine
a small compiler
a memory allocator
a garbage collector

CS 24 Works From Both Perspectives 2

For The Programmer
We will discuss:

important system realities that will change how you program
how to interact with the OS
how to write concurrent programs
how to write code with a security mindset

For The System Builder
You will build:

a virtual machine
a small compiler
a memory allocator
a garbage collector

CS 24 Works From Both Perspectives 2

For The Programmer
We will discuss:

important system realities that will change how you program
how to interact with the OS
how to write concurrent programs
how to write code with a security mindset

For The System Builder
You will build:

a virtual machine
a small compiler
a memory allocator
a garbage collector

CS 24 Works From Both Perspectives 2

For The Programmer
We will discuss:

important system realities that will change how you program
how to interact with the OS
how to write concurrent programs
how to write code with a security mindset

For The System Builder
You will build:

a virtual machine

a small compiler
a memory allocator
a garbage collector

CS 24 Works From Both Perspectives 2

For The Programmer
We will discuss:

important system realities that will change how you program
how to interact with the OS
how to write concurrent programs
how to write code with a security mindset

For The System Builder
You will build:

a virtual machine
a small compiler

a memory allocator
a garbage collector

CS 24 Works From Both Perspectives 2

For The Programmer
We will discuss:

important system realities that will change how you program
how to interact with the OS
how to write concurrent programs
how to write code with a security mindset

For The System Builder
You will build:

a virtual machine
a small compiler
a memory allocator

a garbage collector

CS 24 Works From Both Perspectives 2

For The Programmer
We will discuss:

important system realities that will change how you program
how to interact with the OS
how to write concurrent programs
how to write code with a security mindset

For The System Builder
You will build:

a virtual machine
a small compiler
a memory allocator
a garbage collector

CS 24 Prepares You For Future Systems Courses 3

Operating
Systems

Compilers Security

Networks

Computer
Architecture

Parallel
Computing

Distributed
Systems

DatabasesGraphics

Adam’s Perspective 4

I like to geek out on the stuff I’m teaching. So, I’ve inserted a bit of
what I think is cool into this course.

I think compilers and interpreters are cool. So, we’ll spend some
time thinking about the low-level parts of a compiler.
I think security is cool. So, we’ll spend some time thinking about
the “security mindset” and how to break things.
I think real-world software is cool. So, we’ll spend some time
re-writing core pieces of the system.

Adam’s Perspective 4

I like to geek out on the stuff I’m teaching. So, I’ve inserted a bit of
what I think is cool into this course.

I think compilers and interpreters are cool. So, we’ll spend some
time thinking about the low-level parts of a compiler.

I think security is cool. So, we’ll spend some time thinking about
the “security mindset” and how to break things.
I think real-world software is cool. So, we’ll spend some time
re-writing core pieces of the system.

Adam’s Perspective 4

I like to geek out on the stuff I’m teaching. So, I’ve inserted a bit of
what I think is cool into this course.

I think compilers and interpreters are cool. So, we’ll spend some
time thinking about the low-level parts of a compiler.
I think security is cool. So, we’ll spend some time thinking about
the “security mindset” and how to break things.

I think real-world software is cool. So, we’ll spend some time
re-writing core pieces of the system.

Adam’s Perspective 4

I like to geek out on the stuff I’m teaching. So, I’ve inserted a bit of
what I think is cool into this course.

I think compilers and interpreters are cool. So, we’ll spend some
time thinking about the low-level parts of a compiler.
I think security is cool. So, we’ll spend some time thinking about
the “security mindset” and how to break things.
I think real-world software is cool. So, we’ll spend some time
re-writing core pieces of the system.

The Plan 5

Overview
We’re going to work our way up the “abstraction ladder” emphasizing
things that all programmers need to know.

We’ll pay special attention to uncovering the truth behind the lies.

Lies? What lies? Here’s a few important ones we hope to dispel
throughout the term:

Lie 1: We compute with integers

Lie 2: You only need Python

Lie 3: Memory is like an array

Lie 4: Constants don’t matter

Lie 5: Your computer runs all your programs at the same time

The Plan 5

Overview
We’re going to work our way up the “abstraction ladder” emphasizing
things that all programmers need to know.

We’ll pay special attention to uncovering the truth behind the lies.

Lies? What lies? Here’s a few important ones we hope to dispel
throughout the term:

Lie 1: We compute with integers

Lie 2: You only need Python

Lie 3: Memory is like an array

Lie 4: Constants don’t matter

Lie 5: Your computer runs all your programs at the same time

The Plan 5

Overview
We’re going to work our way up the “abstraction ladder” emphasizing
things that all programmers need to know.

We’ll pay special attention to uncovering the truth behind the lies.

Lies? What lies? Here’s a few important ones we hope to dispel
throughout the term:

Lie 1: We compute with integers

Lie 2: You only need Python

Lie 3: Memory is like an array

Lie 4: Constants don’t matter

Lie 5: Your computer runs all your programs at the same time

The Plan 5

Overview
We’re going to work our way up the “abstraction ladder” emphasizing
things that all programmers need to know.

We’ll pay special attention to uncovering the truth behind the lies.

Lies? What lies? Here’s a few important ones we hope to dispel
throughout the term:

Lie 1: We compute with integers

Lie 2: You only need Python

Lie 3: Memory is like an array

Lie 4: Constants don’t matter

Lie 5: Your computer runs all your programs at the same time

The Plan 5

Overview
We’re going to work our way up the “abstraction ladder” emphasizing
things that all programmers need to know.

We’ll pay special attention to uncovering the truth behind the lies.

Lies? What lies? Here’s a few important ones we hope to dispel
throughout the term:

Lie 1: We compute with integers

Lie 2: You only need Python

Lie 3: Memory is like an array

Lie 4: Constants don’t matter

Lie 5: Your computer runs all your programs at the same time

The Plan 5

Overview
We’re going to work our way up the “abstraction ladder” emphasizing
things that all programmers need to know.

We’ll pay special attention to uncovering the truth behind the lies.

Lies? What lies? Here’s a few important ones we hope to dispel
throughout the term:

Lie 1: We compute with integers

Lie 2: You only need Python

Lie 3: Memory is like an array

Lie 4: Constants don’t matter

Lie 5: Your computer runs all your programs at the same time

The Plan 5

Overview
We’re going to work our way up the “abstraction ladder” emphasizing
things that all programmers need to know.

We’ll pay special attention to uncovering the truth behind the lies.

Lies? What lies? Here’s a few important ones we hope to dispel
throughout the term:

Lie 1: We compute with integers

Lie 2: You only need Python

Lie 3: Memory is like an array

Lie 4: Constants don’t matter

Lie 5: Your computer runs all your programs at the same time

The Plan 5

Overview
We’re going to work our way up the “abstraction ladder” emphasizing
things that all programmers need to know.

We’ll pay special attention to uncovering the truth behind the lies.

Lies? What lies? Here’s a few important ones we hope to dispel
throughout the term:

Lie 1: We compute with integers

Lie 2: You only need Python

Lie 3: Memory is like an array

Lie 4: Constants don’t matter

Lie 5: Your computer runs all your programs at the same time

Outline

1 Motivation

2 Administrivia

3 Representing Information

Our Expectations 6

you know data structures at the level of CS 2

you know C at the level of CS 3

you understand that correctness is critical in system’s programming

The Pre-Test takes no more than eleven hours to complete

Our Expectations 6

you know data structures at the level of CS 2

you know C at the level of CS 3

you understand that correctness is critical in system’s programming

The Pre-Test takes no more than eleven hours to complete

Our Expectations 6

you know data structures at the level of CS 2

you know C at the level of CS 3

you understand that correctness is critical in system’s programming

The Pre-Test takes no more than eleven hours to complete

Our Expectations 6

you know data structures at the level of CS 2

you know C at the level of CS 3

you understand that correctness is critical in system’s programming

The Pre-Test takes no more than eleven hours to complete

Our Expectations 6

you know data structures at the level of CS 2

you know C at the level of CS 3

you understand that correctness is critical in system’s programming

The Pre-Test takes no more than eleven hours to complete

Your Expectations 7

course staff will do our best to help you when you get stuck

course staff will grade each assignment within two weeks of when
you turn it in

course staff will hold an obscene number of office hours

Prof. Blank’s “door” is always open

Your Expectations 7

course staff will do our best to help you when you get stuck

course staff will grade each assignment within two weeks of when
you turn it in

course staff will hold an obscene number of office hours

Prof. Blank’s “door” is always open

Your Expectations 7

course staff will do our best to help you when you get stuck

course staff will grade each assignment within two weeks of when
you turn it in

course staff will hold an obscene number of office hours

Prof. Blank’s “door” is always open

Your Expectations 7

course staff will do our best to help you when you get stuck

course staff will grade each assignment within two weeks of when
you turn it in

course staff will hold an obscene number of office hours

Prof. Blank’s “door” is always open

Your Expectations 7

course staff will do our best to help you when you get stuck

course staff will grade each assignment within two weeks of when
you turn it in

course staff will hold an obscene number of office hours

Prof. Blank’s “door” is always open

Aside: What this course is NOT 8

This is not a C course

This is not an EE course

This is not a hardware course

Aside: What this course is NOT 8

This is not a C course

This is not an EE course

This is not a hardware course

Aside: What this course is NOT 8

This is not a C course

This is not an EE course

This is not a hardware course

Aside: What this course is NOT 8

This is not a C course

This is not an EE course

This is not a hardware course

Grading 9

Grading Breakdown
pretest = 5%
projects = varying percentages
lecturcises = 30%
final = 10%

Warnings

Code that fails the correctness tests that we provide will receive no
credit
We reserve the right to have private tests. Passing all the tests we
give you does not mean your code is perfect.
We will not accept projects late due to misuse of git.
If you do not get any credit on the coding portion, you will not get
any credit on the written portion.

Grading 9

Grading Breakdown
pretest = 5%
projects = varying percentages
lecturcises = 30%
final = 10%

Warnings
Code that fails the correctness tests that we provide will receive no
credit

We reserve the right to have private tests. Passing all the tests we
give you does not mean your code is perfect.
We will not accept projects late due to misuse of git.
If you do not get any credit on the coding portion, you will not get
any credit on the written portion.

Grading 9

Grading Breakdown
pretest = 5%
projects = varying percentages
lecturcises = 30%
final = 10%

Warnings
Code that fails the correctness tests that we provide will receive no
credit
We reserve the right to have private tests. Passing all the tests we
give you does not mean your code is perfect.

We will not accept projects late due to misuse of git.
If you do not get any credit on the coding portion, you will not get
any credit on the written portion.

Grading 9

Grading Breakdown
pretest = 5%
projects = varying percentages
lecturcises = 30%
final = 10%

Warnings
Code that fails the correctness tests that we provide will receive no
credit
We reserve the right to have private tests. Passing all the tests we
give you does not mean your code is perfect.
We will not accept projects late due to misuse of git.

If you do not get any credit on the coding portion, you will not get
any credit on the written portion.

Grading 9

Grading Breakdown
pretest = 5%
projects = varying percentages
lecturcises = 30%
final = 10%

Warnings
Code that fails the correctness tests that we provide will receive no
credit
We reserve the right to have private tests. Passing all the tests we
give you does not mean your code is perfect.
We will not accept projects late due to misuse of git.
If you do not get any credit on the coding portion, you will not get
any credit on the written portion.

Regrade Requests 10

To maintain consistency, all regrade requests should go directly to Prof.
Blank via e-mail. Do not attempt to contact TAs about grading
questions.

Some Changes From CS 2/3. . . 11

Office Hours!
OH are now in ANB 106 (which is called (CS)2 for Computer
Science Collaboration Support).

OH The schedule has also changed a bit–we’ve removed office hours
from days that were unpopulated and started them earlier at 3pm!

(CS)2 is a new dedicated space for undergraduates taking CS
courses! If it’s not in use for a course, you can just walk in and use it
as a collaboration space! It has power, monitors to connect to,
chargers, and dry-erase tables!

Lecturcises! tl;dr: Some of the exercises in lecture will now be
turned in (later in the week). See syllabus for full details.

Outline

1 Motivation

2 Administrivia

3 Representing Information

Bits, Bytes, and Binary 12

Bits are the “digits” of binary. Every bit is 0 or 1.

Why Binary?
Easy to store with bistable elements
Reliably transmitted on noisy and inaccurate wires

A byte is a group of 8 bits.

Computers are made entirely of circuits acting only on bits. Everything
is represented as a series of bits.

Bits, Bytes, and Binary 12

Bits are the “digits” of binary. Every bit is 0 or 1.

Why Binary?
Easy to store with bistable elements
Reliably transmitted on noisy and inaccurate wires

A byte is a group of 8 bits.

Computers are made entirely of circuits acting only on bits. Everything
is represented as a series of bits.

Bits, Bytes, and Binary 12

Bits are the “digits” of binary. Every bit is 0 or 1.

Why Binary?
Easy to store with bistable elements
Reliably transmitted on noisy and inaccurate wires

A byte is a group of 8 bits.

Computers are made entirely of circuits acting only on bits. Everything
is represented as a series of bits.

Bits, Bytes, and Binary 12

Bits are the “digits” of binary. Every bit is 0 or 1.

Why Binary?
Easy to store with bistable elements
Reliably transmitted on noisy and inaccurate wires

A byte is a group of 8 bits.

Computers are made entirely of circuits acting only on bits. Everything
is represented as a series of bits.

Binary as Numbers 13

Read a binary number the same way as a decimal number.

1234 = 1000+200+30+4 = 1×103+2×102+3×101+4×100

In general, a decimal number with digits dn−1dn−2⋯d0 is
n−1

∑
k=0

dk ×10k.

Binary just replaces the 10 with a 2. That is:

In general, a binary number with bits bn−1bn−2⋯b0 is
n−1

∑
k=0

bk ×2k.

It quickly becomes annoying to use binary, because there are so many
digits to express even small numbers. So, we often write things
(numbers, addresses, instructions) in base 16.

Binary as Numbers 13

Read a binary number the same way as a decimal number.

1234 = 1000+200+30+4 = 1×103+2×102+3×101+4×100

In general, a decimal number with digits dn−1dn−2⋯d0 is
n−1

∑
k=0

dk ×10k.

Binary just replaces the 10 with a 2. That is:

In general, a binary number with bits bn−1bn−2⋯b0 is
n−1

∑
k=0

bk ×2k.

It quickly becomes annoying to use binary, because there are so many
digits to express even small numbers. So, we often write things
(numbers, addresses, instructions) in base 16.

Binary as Numbers 13

Read a binary number the same way as a decimal number.

1234 = 1000+200+30+4 = 1×103+2×102+3×101+4×100

In general, a decimal number with digits dn−1dn−2⋯d0 is
n−1

∑
k=0

dk ×10k.

Binary just replaces the 10 with a 2. That is:

In general, a binary number with bits bn−1bn−2⋯b0 is
n−1

∑
k=0

bk ×2k.

It quickly becomes annoying to use binary, because there are so many
digits to express even small numbers. So, we often write things
(numbers, addresses, instructions) in base 16.

Binary as Numbers 13

Read a binary number the same way as a decimal number.

1234 = 1000+200+30+4 = 1×103+2×102+3×101+4×100

In general, a decimal number with digits dn−1dn−2⋯d0 is
n−1

∑
k=0

dk ×10k.

Binary just replaces the 10 with a 2. That is:

In general, a binary number with bits bn−1bn−2⋯b0 is
n−1

∑
k=0

bk ×2k.

It quickly becomes annoying to use binary, because there are so many
digits to express even small numbers. So, we often write things
(numbers, addresses, instructions) in base 16.

Binary as Numbers 13

Read a binary number the same way as a decimal number.

1234 = 1000+200+30+4 = 1×103+2×102+3×101+4×100

In general, a decimal number with digits dn−1dn−2⋯d0 is
n−1

∑
k=0

dk ×10k.

Binary just replaces the 10 with a 2. That is:

In general, a binary number with bits bn−1bn−2⋯b0 is
n−1

∑
k=0

bk ×2k.

It quickly becomes annoying to use binary, because there are so many
digits to express even small numbers. So, we often write things
(numbers, addresses, instructions) in base 16.

Hexadecimal 14

Base 16 is called hexadecimal and it uses the symbols
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, where A through F represent 10
through 15.

 F A C E
 1111101011001110
0x
0b

Note that 4 bits / hex digit (why?)

Poll
What is (1337)10 in hexadecimal?

Hexadecimal 14

Base 16 is called hexadecimal and it uses the symbols
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, where A through F represent 10
through 15.

 F A C E
 1111101011001110
0x
0b

Note that 4 bits / hex digit (why?)

Poll
What is (1337)10 in hexadecimal?

Hexadecimal 14

Base 16 is called hexadecimal and it uses the symbols
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, where A through F represent 10
through 15.

 F A C E
 1111101011001110
0x
0b

Note that 4 bits / hex digit (why?)

Poll
What is (1337)10 in hexadecimal?

Data Representation 15

What does “0xe282ac” mean?

It’s an integer (14844588)...right?

Data Representation 15

What does “0xe282ac” mean?

It’s an integer (14844588)...right?

Strings 16

Or is it an ASCII string?

Letter Base-10 Binary
A 65 01000001
B 66 01000010
D ? ?
a 97 ?
_ ? 01011111
! 33 ?

â,¬

Or a unicode code point (e)?

Strings 16

Or is it an ASCII string?

Letter Base-10 Binary
A 65 01000001
B 66 01000010
D ? ?
a 97 ?
_ ? 01011111
! 33 ?

â,¬

Or a unicode code point (e)?

Color 17

Or a color?

Instructions 18

Or x86-64 instructions?

0: e2 82 loop -124
2: ac lodsb

Which Computer Systems? 19

In this course, we will limit our discussions in the following ways:
We will only cover the x86-64 architecture (not ARM or RISC-V)
We will assume we’re working with Linux
Our case studies will be limited to the Intel Nehalem
microarchitecture

We have a reference machine set up which you should use for all of the
projects. The Pre-Test includes a section on getting this environment set
up.

If you do not use labradoodle, we are not responsible for
according deductions in your grades.

	Motivation
	Administrivia
	Representing Information

