
Adam Blank Fall 2023Lecture 01

CS
24

Introduction to Computing

Systems
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Compilation Process 1





 

  
  
  

   

   
  
 


  

   
  
 






   

  

 


 

   
     








Executing Java Code 2
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Project01: Build A TeenyJVM 3

Overview
In this project, you will implement all the integer JVM instructions. Your
JVM will be able to run real compiled class files.

Learning Outcomes
I can distinguish between how Java and C execute on a computer.
I can identify the di�erent levels of expressiveness between
assembly/bytecode and statements in a high-level programming
language.
I can describe how code can be viewed as a type of data.
I can write a virtual machine.
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Memory Abstraction 4

Memory, Addresses, and Pointers
Memory is (essentially) a large array of bytes.
An address is an index into that array.
A pointer is a variable that stores an address.

1 char *p = malloc(sizeof(char));
2 *p = 42;
3 printf("p = %p\n", p);
4 printf("*p = %p\n", *p);
5 printf("&p = %p\n", &p);

OUTPUT

>> p = 0x01

>> *p = 0x2a

>> &p = 0x04

A Picture of Memory
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Memory Abstraction 5

1 char **p = malloc(sizeof(char *));
2 *p = malloc(sizeof(char));
3 **p = 42;
4 printf("p = %p\n", p);
5 printf("*p = %p\n", *p);
6 printf("**p = %p\n", **p);
7 printf("&p = %p\n", &p);
8 printf("&*p = %p\n", &*p);
9 printf("*&p = %p\n", *&p);

OUTPUT

>> p = 0x0a

>> *p = 0x04

>> **p = 0x2a

>> &p = 0x09

>> &*p = 0x0a

>> *&p = 0x0a

A Picture of Memory
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Address Spaces 6
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Address Spaces 7

Poll
How many bits are necessary to represent an address in a tiny computer
with only 8 addressable bytes?

a 3
b 4
c 8
d 64
e ???



64-bit Address Space 8

The word size of a machine is the size of its registers and addresses.

labradoodle (and most other machines) have a 64-bit word size. This
gives us 18 EB (exabytes) of addressable memory.
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FF

To reference a word, we use the address of the first byte. Thus, to
move to the next word, we add eight (64-bit register = 8 bytes).



Reading/Storing Multiple Bytes: Endianness 9

So, how are the bytes within a multi-byte word ordered in memory?
OUTPUT

>> x = 0xa1b2c3d4

>> &x = 0x100

Big Endian (Internet, JVM)
Most Significant Byte First

Little Endian (x86, ARM (most OSes))
Least Significant Byte First

I

An((3)a4)
8 : 234



Reading/Storing Multiple Bytes: Endianness 9

So, how are the bytes within a multi-byte word ordered in memory?
OUTPUT

>> x = 0xa1b2c3d4

>> &x = 0x100

Big Endian (Internet, JVM)
Most Significant Byte First

0xc30xa1 0xb2 0xd4
0x100 0x101 0x102 0x103

Little Endian (x86, ARM (most OSes))
Least Significant Byte First

0xb20xd4 0xc3 0xa1
0x100 0x101 0x102 0x103



Memory and Endianness 10

1 uint8_t *p1 = 16;
2 uint32_t *p2 = 0x1C;
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What are the values of *p1 and *p2 (in decimal) on a little endian

machine?
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