Adam Blank Lecture 01 Fall 2023

Introduction to Computing
Systems

CS 24: Introduction to Computing Systems

Memory and Fixed-Width
Integers

mmm&mg}mmmmymmmmqmmmmm

o o
QS Q N N v
& N N N N

Outline

1 Compilation and JVM

2 Memory

3 Integers

Outline

1 Compilation and JVM

B Memory

B Integers

Compilation Process

A ! 01010101
' 11011011
01110111

Hardware Machine Code

64 05 6¢C

Java Virtual Machine Java Bytecode

movl %eax, -12(%rbp)
movl %esi, %eax
addq $16, %rsp

x86-64 Assembly

isub
iconst_2
idiv

Java Bytecode
Instructions

char #x = malloc(sizeof (char));
*x = 'a';

printf("%c\n", x);

free(x);

C Program

public class Hello {
public static void main(String[] args) {
System.out.println("Hello");
}
}

Java Program

Executing Java Code

Preview

lecture.pdf

Project01: Build A TeenyJVM

Overview

In this project, you will implement all the integer JVM instructions. Your

JVM will be able to run real compiled class files.

Learning Outcomes
® | can distinguish between how Java and C execute on a computer.

® | can identify the different levels of expressiveness between
assembly/bytecode and statements in a high-level programming
language.

® | can describe how code can be viewed as a type of data.

B | can write a virtual machine.

Outline

B Compilation and JVM

2 Memory

B Integers

Memory Abstraction

Memory, Addresses, and Pointers

® Memory is (essentially) a large array of bytes.

® An address is an index into that array.

® A pointer is a variable that stores an address.

1 char *p = malloc(sizeof(char));
2 xp = 42;
3 printf("p = %p\n", p);
4 printf("*«p = %p\n", *p);
5 printf("&p = %p\n", &p);
QUTPUT
>> p = 0x01
>> *p = 0x2a
>> &p = 0x04

A Picture of Memory

O0x2a 0x01

0x0 Ox1 O0x2 0x3 0x4 O0x5 0x6

Memory Abstraction

malloc(sizeof (char *));
.= mallec(sizeof(char));

2
3 xxp = 42;
4 printf("p = %Sp\n", pl:
5 printf("xp = %p\n",
6 printf("*xxp = %p\n", *xp);
7 printf("&p = %p\n", &p);
8 printf("&*p = %p\n", &xp);
9 printf("*&p = %p\n", *&p);
OUTPUT
>> p = 0x0a
>> xp = 0x04
>> xxp = Ox2a
1 >> &p = 0x09
>> &*p = 0x0a
>> *gp = 0x0a

A Picture of Memory
00N oxk | 04y

0x0 Ox1 O0x2 0x3 0x4 O0x5 0x6 O0x7 O0x8 0x9 OxA OxB 0xC 0xD OxE OxF

Address Spaces

i D:]byte

Y
it Address Space %

3-bit Address Space rrrrrrT
4-bit Address Space crrrrrrrTrTITID
5-bit Address Space crrers
6-bit Address Space crrrrs
T-bit Address Space

8bit Address Space.

Address Spaces

Poll
How many bits are necessary to represent an address in a tiny computer
with only 8 addressable bytes?

A3

[b 3
[c ¢S
E 64
| 7’77

64-bit Address Space

The word size of a machine is the size of its registers and addresses.

labradoodle (and most other machines) have a 64-bit word size. This
gives us 18 EB (exabytes) of addressable memory.

s &
o o
O
& ¢

¥

To reference a word, we use the address of the first byte. Thus, to
move to the next word, we add eight (64-bit register = 8 bytes).

Reading/Storing Multiple Bytes: Endianness

So, how are the bytes within a multi-byte word ordered in memory?

OUTPUT
>> x = Oxalb2c3d4
>> &x = 0x100

Reading/Storing Multiple Bytes: Endianness

So, how are the bytes within a multi-byte word ordered in memory?

OUTPUT
>> x = Oxalb2c3d4
>> &x = 0x100
Big Endian (Internet, JVM) Little Endian (x86, ARM (mt05))

Most Significant Byte First Least Significant Byte First

Oxal 0xb2 0xc3 0xd4 0xd4 0xc3 0xb2|0xal

0x100 0x101 0x102 0x103 0x100 0x101 0x102 0x103

Memory and Endianness 10

A anll
1 uint8_t +pd = 03™VOKC

2 .uin t *p2 = Ox1C;

L)

Q '\/ '\/
S & & & 0,‘,

What are the values oand *p2 (in decimal) on a little endian

machine?

W -
+6

