
Adam Blank Fall 2023Lecture 01

CS
24

Introduction to Computing

Systems

CS 24: Introduction to Computing Systems

Memory and Fixed-Width

Integers

0x
00

0x
08

0x
10

0x
18

0x
20

FFCA0110DFEBCAFE2983287323622E8EFFFFFFDDEAFACE7EE8D9A64E8C000000

Outline

1 Compilation and JVM

2 Memory

3 Integers

Outline

1 Compilation and JVM

2 Memory

3 Integers

Compilation Process 1

Executing Java Code 2

JVM

Machine

Java
Program

Preview

lecture.pdf

Project01: Build A TeenyJVM 3

Overview
In this project, you will implement all the integer JVM instructions. Your
JVM will be able to run real compiled class files.

Learning Outcomes
I can distinguish between how Java and C execute on a computer.
I can identify the di�erent levels of expressiveness between
assembly/bytecode and statements in a high-level programming
language.
I can describe how code can be viewed as a type of data.
I can write a virtual machine.

Outline

1 Compilation and JVM

2 Memory

3 Integers

Memory Abstraction 4

Memory, Addresses, and Pointers
Memory is (essentially) a large array of bytes.
An address is an index into that array.
A pointer is a variable that stores an address.

1 char *p = malloc(sizeof(char));
2 *p = 42;
3 printf("p = %p\n", p);
4 printf("*p = %p\n", *p);
5 printf("&p = %p\n", &p);

OUTPUT

>> p = 0x01

>> *p = 0x2a

>> &p = 0x04

A Picture of Memory

0x010x2a

0x0 0x1 0x2 0x3 0x50x4 0x70x6

Memory Abstraction 5

1 char **p = malloc(sizeof(char *));
2 *p = malloc(sizeof(char));
3 **p = 42;
4 printf("p = %p\n", p);
5 printf("*p = %p\n", *p);
6 printf("**p = %p\n", **p);
7 printf("&p = %p\n", &p);
8 printf("&*p = %p\n", &*p);
9 printf("*&p = %p\n", *&p);

OUTPUT

>> p = 0x0a

>> *p = 0x04

>> **p = 0x2a

>> &p = 0x09

>> &*p = 0x0a

>> *&p = 0x0a

A Picture of Memory

0x0 0x1 0x2 0x3 0x50x4 0x70x6 0x8 0x9 0xA 0xB 0xD0xC 0xF0xE

⑧

-

-

&x29 OXA *4

->

Address Spaces 6

☐ = 1 byte
0b
00
0

0b
11
1

☐☐☐☐☐☐☐☐
3-bit Address Space

0b
00
00

0b
11
11

☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐
4-bit Address Space

☐☐

☐☐☐☐☐☐☐☐

☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐

☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐

☐☐

☐☐

3-bit Address Space

4-bit Address Space

5-bit Address Space

6-bit Address Space

7-bit Address Space

8-bit Address Space

>

↓
0 itN

Address Spaces 7

Poll
How many bits are necessary to represent an address in a tiny computer
with only 8 addressable bytes?

a 3
b 4
c 8
d 64
e ???

64-bit Address Space 8

The word size of a machine is the size of its registers and addresses.

labradoodle (and most other machines) have a 64-bit word size. This
gives us 18 EB (exabytes) of addressable memory.

0x
00
0.
.0
00

☐☐☐☐☐☐☐☐
☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐

☐☐☐☐☐☐☐☐...

0x
FF
F.
.F
FF

To reference a word, we use the address of the first byte. Thus, to
move to the next word, we add eight (64-bit register = 8 bytes).

Reading/Storing Multiple Bytes: Endianness 9

So, how are the bytes within a multi-byte word ordered in memory?
OUTPUT

>> x = 0xa1b2c3d4

>> &x = 0x100

Big Endian (Internet, JVM)
Most Significant Byte First

Little Endian (x86, ARM (most OSes))
Least Significant Byte First

I

An((3)a4)
8 : 234

Reading/Storing Multiple Bytes: Endianness 9

So, how are the bytes within a multi-byte word ordered in memory?
OUTPUT

>> x = 0xa1b2c3d4

>> &x = 0x100

Big Endian (Internet, JVM)
Most Significant Byte First

0xc30xa1 0xb2 0xd4
0x100 0x101 0x102 0x103

Little Endian (x86, ARM (most OSes))
Least Significant Byte First

0xb20xd4 0xc3 0xa1
0x100 0x101 0x102 0x103

Memory and Endianness 10

1 uint8_t *p1 = 16;
2 uint32_t *p2 = 0x1C;

0x
00

0x
08

0x
10

0x
18

0x
20

FFCA0110DFEBCAFE2983287323622E8EFFFFFFDDEAFACE7EE8D9A64E8C000000

What are the values of *p1 and *p2 (in decimal) on a little endian

machine?

↓IA E

00 8000008C-

- fr
↑ A

E
-

⑦
↑

Hink8- yes ne
I

*P

